ESSENTIAL MATH FORMULAS

DESIRED BODY WEIGHT (DBW)

DBW $=$ LBW $\div(1-\mathrm{DBF} \%)$
Step 1: 100\% - Fat \% = Lean body \%
Step 2: Body weight x Lean body \% = LBW
Step 3: 100\% - Desired fat \% = Desired lean \%
Step 4: LBW \div Desired lean \% = DBW
Example: 200-pound individual with 30% body fat; How much will he or she weigh at 25% body fat?

- $100 \%-30 \%=70 \%$
- 200 pounds $\times 0.70=140$ pounds LBW
- $100 \%-25 \%=75 \%$
- 140 pounds $\div 0.75=187$ pounds DBW

WAIST-TO-HIP RATIO (WHR)
Waist \div Hip $=$ WHR
Example: Individual with 36-inch waist and 35-inch hip circumference 36 in $\div 35$ in $=1.03$

BMI METRIC FORMULA

Metric Formula: Weight $(\mathrm{kg}) \div$ Height $^{2}(\mathrm{~m})$
Weight conversion:
weight in pounds $\div 2.2=$ weight in kg Height conversion:
(height in inches $\times 2.54$) $\div 100=$ height in meters
Example: BMI for a 5' 8", 196-pound individual
$\left(5^{\prime} \times 12\right)+8=68^{\prime \prime} \quad 196 \div 2.2=89 \mathrm{~kg}$
$(68 " \times 2.54) \div 100=1.73 \mathrm{~m}$
$89 \mathrm{~kg} \div(1.73 \mathrm{~m} \times 1.73 \mathrm{~m})=30$ (rounded up)

BMI STANDARD FORMULA

Standard Formula:
$\underline{[\text { (Weight (lbs) x 703) } \div \text { Height (inches)] }}$
Height (inches)

- Multiply weight (lbs) by 703
- Convert the height into inches: feet x 12 + inches
- Divide (weight x 703) twice by the height in inches

Example: BMI for a $5^{\prime} 8^{\prime \prime}$, 196 pound individual

- 196 lbs x $703=137,788$
- $137,788 \div 68$ inches $=2026.3$ (rounded up)
- $2026.3 \div 68$ inches $=29.7=30$ (rounded up)

SUBMAXIMAL STRENGTH ASSESSMENTS (see Table 10-25)

Pounds lifted $\div \%$ 1-RM $=$ Predicted 1-RM
Example: Individual can perform maximum of 10 repetitions
(10-RM) with 150 pounds. What is his predicted 1-RM?

$$
10 \mathrm{RM} \div 0.75=1-\mathrm{RM}
$$

150 pounds $\div 0.75=200$ pounds

1. Estimating 1-RM using the repetition table (See Table 10-25)

The example for option 1 is already on the sheet
2. Estimating 1-RM using prediction coefficients (see Table 10-27)

1RM = pounds lifted x correlating coefficient
Example: A client does a bench press with 60lbs and performs 3 repetitions. What is their predicted 1RM?

3 repetitions $=$ a coefficient of 1.08 for bench/chest press $60 \mathrm{lbs} \times 1.08=64.8 \mathrm{lbs}$ is the 1 RM

PREDICTED MAXIMAL HEART RATE

Fox, Naughton, Haskell: MHR = 220 - Age
Tanaka, Monahan, Seals: MHR = 208-(0.7 x Age)
Gellish et al.: MHR = 206.9-(0.67 x Age).
Example: Calculate the maximum heart rate for a 42-year-old client Fox, Naughton, Haskell: 220-42 = 178 bpm
Tanaka, Monahan, Seals: $208-(0.7 \times 42)=179$ bpm
Gellish et al.: 206.9-(0.67 x 42) = 179 bpm

KARVONEN FORMULA - HEART RATE RESERVE (HRR)

Target HR (THR) $=($ HRR x \% Intensity $)+$ RHR
Where: HRR = MHR - RHR
Next, show the example
34 -year-old, resting heart rate $=62 \mathrm{bpm}, 75 \%$ of HRR
Step 1: 220-34 = 186 bpm (max heart rate)
Step 2: 186 (Max HR) - 62 (resting HR) $=124$ (HRR)
Step 3: 124 (HRR) X 0.75 (\% HRR) +62 (Resting HR) $=155$ bpm (Target Heart Rate)

Example: 34 -year-old, resting heart rate $=62 \mathrm{bpm}, 75 \%$ of HRR

- 220-34 = 186 bpm
- $186-62=124$
- $(124 \times 0.75)+62=155 \mathrm{bpm}$

CALORIC (KCAL) VALUES PER GRAM (G)

Fat $=9 \mathrm{kcal} / \mathrm{g}$	Alcohol $=7 \mathrm{kcal} / \mathrm{g}$
Carbohydrates $=4 \mathrm{kcal} / \mathrm{g}$	Protein $=4 \mathrm{kcal} / \mathrm{g}$

TOTAL CALORIES AND PERCENTAGE OF CALORIES

Nutrition label values: 36 g carbohydrate, 11 g protein, 8 g fat Total Calories:

- Calories from carbs: $36 \mathrm{~g} \times 4 \mathrm{cal} / \mathrm{g}=144$ calories
- Calories from protein: $11 \mathrm{~g} \times 4 \mathrm{cal} / \mathrm{g}=44$ calories
- Calories from fat: $8 \mathrm{~g} \times 9 \mathrm{cal} / \mathrm{g}=72$ calories

Total calories $=144+44+72=260$ calories
Percentage of Calories:

- Carb calories \div total calories $=\%$ of calories from carbohydrate $144 \div 260=55 \%$ (0.55) of calories from carbohydrate
- Protein calories \div total calories $=\%$ of calories from protein $44 \div 260=17 \%$ (0.169) of calories are from protein
- Fat calories \div total calories $=\%$ of calories from fat $72 \div 260=28 \%$ (0.276) of calories are from fat

DAIIY CALORIC DEFICIT NEEDED TO ACHIEVE DESIRED WEIGHT LOSS IN SET TIMEFRAME

1 pound body fat $=3,500 \mathrm{kcal}$
Step 1: (Desired Weight Loss (pounds) x 3,500 kcal/pounds) \div \# Weeks $=$ Weekly Caloric Deficit (kcal/week)
Step 2: Weekly Caloric Deficit (kcal/week) $\div 7$ days /week = Daily Caloric Deficit

Example: Individual wants to lose 15 pounds in 20 weeks; What daily caloric deficit is required to reach this goal?

- $(15$ pounds $\times 3,500 \mathrm{kcal} /$ pounds $) \div 20$ weeks $=$ $2,625 \mathrm{kcal} /$ week
- $2,625 \mathrm{kcal} /$ week $\div 7$ days/week $=375 \mathrm{kcal} /$ day

> For additional information and guidance on these formulas, you can refer to your textbook, online material, or videos on www.acefitness.org/fitness-certifications/ace-answers/

